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Abstract. We present a new time-dependent density functional approach for studying the relax-
ational dynamics of an assembly of interacting particles, subject to thermal noise. Starting from the
Langevin stochastic equations of motion for the velocities of the particles, we are able by means of
an approximate closure to derive a self-consistent deterministic equation for the temporal evolution
of the average particle density. The closure is equivalent to assuming that the equal-time two-point
correlation function out of equilibrium has the same properties as its equilibrium version. The
changes over time of the density depend on the functional derivatives of the grand canonical free-
energy functional F [ρ] of the system. In order to assess the validity of our approach, we performed
a comparison between the Langevin dynamics and the dynamic density functional method for
a one-dimensional hard-rod system in three relevant cases and found remarkable agreement. In
addition, we consider the case where one is forced to use an approximate form of F [ρ].

The present theoretical understanding of the static behaviour of fluids owes much to density
functional (DF) methods, which provide a rigorous tool for studying all of their equilibrium
properties [1]. In fact, such an approach deals successfully both with diverse problems such
as adsorption, wetting, confinement, and solid–liquid and gas–liquid phase transitions, and
with the response to static perturbations. In principle, if one knew the exact form of the
free-energy functional for a given system, one could calculate the bulk and surface properties,
the non-uniform density profiles in the presence of static external fields, and all of the n-
body correlations. On the other hand, if a system is subject to some external time-dependent
field or if it has been brought away from an equilibrium state by removing some constraint,
one cannot rely on such a rigorous framework because the usual approach based on standard
statistical mechanical arguments is not applicable. Nevertheless, the growing attention which
is being devoted to the off-equilibrium properties of fluids and the remarkable progress in the
understanding of the nature of supercooled liquids render worthwhile the effort of finding a
suitable extension to the dynamics of density functional methods.

Theories of phase transitions are usually formulated in terms of a suitable order parameter,
and the dynamic density functional approach has been employed frequently in the past on a
phenomenological basis. Our main intention is to obtain a direct microscopic link with the
equilibrium DF formalism, making clear the assumptions behind the method and showing
examples of its use for the dynamics of systems with strong correlations due to molecular
packing effects.
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Our derivation of a time-dependent density functional approach [2] is based on a generic
microscopic model made up of N large colloidal particles whose dynamics is overdamped,
i.e. we neglect inertial effects; each particle moves under the influence of the remaining N − 1
colloidal particles and experiences collisions with smaller particles (the bath) described by a
random-noise term, leading to a Langevin dynamics:

dri (t)

dt
= −	 ∇i

[∑
j

V (ri − rj ) + Vext (ri )

]
+ ηi (t) (1)

where the term ηi (t) = (ηx
i (t), η

y

i (t), η
z
i (t)), representing the influence of the thermal bath, has

zero average and variance 〈ηα
i (t)η

β

j (t
′)〉 = 2Dδij δ

αβδ(t − t ′) where α, β run over x, y, z. The
constants 	 and D are the mobility and the diffusion coefficient of the particles, respectively;
the Einstein relation gives 	/D = β ≡ 1/T . Hereafter, we assume 	 = 1 to fix the unit of
time and have D = T = β−1.

Instead of considering all of the trajectories generated from equation (1), we shall consider
the evolution of the density of particles. It can be shown by standard manipulations [3,4] that
the instantaneous global density operator

ρ̂(r, t) =
∑
i=1,N

δ(ri (t) − r)

obeys the following stochastic equation:

∂ρ̂(r, t)

∂t
= ∇ ·

[
T ∇ρ̂(r, t) + ρ̂(r, t)∇Vext (r)

+ ρ̂(r, t)

∫
dr′ ρ̂(r′, t)∇V (r − r′) + ζ(r, t)

√
ρ̂(r, t)

]
(2)

where the vector noise ζ acting on the density has zero average and correlation

〈ζµ(r, t)ζ ν(r′, t ′)〉 = 2T δ(t − t ′)δ(r − r′).

After performing an ensemble average over the noise in equation (2), one can replace ρ̂

by its average ρ and the product by the instantaneous equal-time correlation function, while
the last term disappears:

∂ρ(r, t)

∂t
= ∇ · [T ∇ρ(r, t) + ρ(r, t)∇Vext (r)]

+ ∇ ·
[∫

dr′ 〈ρ̂(r, t)ρ̂(r′, t)〉 ∇V (r − r′)
]
. (3)

The resulting equation connects the single-particle distribution with the two-particle
distribution, which in turn depends on the three-particle correlation function. We do not
have information about the two-particle correlation unless we solve its governing equation,
and this generates an infinite hierarchy.

In order to close the equations, we assume that the evolution of the system can be
represented by an infinite sequence of equilibrium states obtained by applying at every instant
a pinning field u(r) which renders the average profile ρ(r, t) a minimum of the grand potential
functional �[ρ] of the system. In other words, at any instant there is a profile ρ0(r) ≡ ρ(r, t)

which is an equilibrium density profile of the system in the presence of the field u(r). Rigorous
theorems tell us that such a u(r) always exists and is a unique functional of ρ. Actually we do
not need to compute u explicitly.

Thus from the general properties of the equilibrium functionals we can eliminate the two-
point correlation in favour of the direct correlation using the first equation of the BBGKY
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hierarchy and the relation [5]

β
1

ρ0(r)

∫
dr ′ ρ(2)

0 (r, r′)∇V (r − r′) = −
∫

dr′ c(2)(r, r′)∇ρ0(r
′)

= ∇ δ

δρ0(r)
[β !F [ρ0]] (4)

where c(2)(r, r′) is the direct correlation function.
Thus we may rewrite the equation of evolution for the density as

∂ρ(r, t)

∂t
= ∇ ·

[
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

]
(5)

which has the form of a continuity equation, ∂ρ/∂t + ∇ · j = 0, with the current of particles
given by

j(r, t) = −ρ(r, t)∇ δF [ρ]

δρ(r)

∣∣∣∣
ρ(r,t)

. (6)

Equations (5) and (6) have been proposed before on a phenomenological basis [6], while
in our derivation we make direct contact with the initial Langevin dynamics, equation (1).

In summary, we have used the fact that at any instant we can find a fictitious external
potential u(r) which equilibrates the system, i.e. constrains its grand potential to be minimal.
This minimum is characterized by the imposed density profile ρ0(r) = ρ(r, t) and by
equilibrium correlations ρ(2)

0 (r, r′) consistent with it. The present approximation replaces the
true off-equilibrium pair distribution function 〈ρ̂(r, t)ρ̂(r′, t)〉 by the equilibrium ρ

(2)
0 (r, r′),

and then uses the equilibrium density functional !F [ρ] to obtain the relevant information on
this function, without its explicit evaluation.

The assumption that the two routes, BBGKY and equation (4), are equivalent implies that
the fluctuation-dissipation theorem holds, while in general, out of equilibrium, it is violated. In
fact the relation connecting ρ

(2)
0 (r, r′) to c(2)(r, r′) (the OZ equation) is an exact equilibrium

property and is based on the idea that the correlation function is the matrix inverse of the second
derivative of the functional F with respect to ρ0(r).

The main features of this approach are the following:

(a) Since F [ρ] is a functional solely of the density field, equation (5) is a closed non-linear
equation for ρ(r, t).

(b) The equation is deterministic and the variable ρ(r, t) has to be interpreted as the
instantaneous density operator averaged over the realizations of the random noise ηi (t).
Such thermal noise generates the diffusion term and is associated with the ideal-gas
entropy.

(c) The only assumptions leading to equation (5) are that the system follows a relaxational
dynamics, which may be described by the Brownian motion of the particles in a thermalized
bath, and that the instantaneous two-particle correlations are approximated by those in an
equilibrium system having the same density distribution and are calculated by means of
the density functional F [ρ].

In the long-time limit, the evolution of the system leads to its equilibrium density
distribution, which corresponds to a uniform value of µ = δF/δρ(r), i.e. the usual Euler–
Lagrange equation in the equilibrium DF formalism. However, the trajectories that lead to the
minima of F are not necessarily along the directions corresponding to the maximum slope.
The continuity equation implies that the local conservation of particles is built in and imposes
important constraints on the local changes of ρ(r, t).
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The use of free-energy density functionals with many minima have led to the necessity for
modifications. When the deterministic time evolution (5) gets trapped at a ‘metastable state’
it can never reach the true equilibrium state. In the literature, various authors [3, 9–11] have
introduced an extra random-noise term in (5) in order to allow the system to jump over any
‘metastability barrier’ in a finite time. From our analysis it is clear that the use of the free-
energy density functional makes sense only for the density ρ(r, t) = 〈ρ̂(r, t)〉, averaged over
the realizations of ηi (t) in the Langevin dynamics, and this averaging gives the deterministic
equation (5).

We validated the method in a one-dimensional case where the equilibrium DF is exactly
known. Using equation (5) together with Percus’s [7] excess free-energy density functional
for an assembly of hard rods of length σ , and defining

η(x) =
∫ x+σ/2

x−σ/2
dx ′ ρ(x ′)

we obtain the following equation for the time evolution of the density:

∂ρ(x, t)

∂t
= ∂2ρ(x, t)

∂x2
+

∂

∂x

[
ρ(x, t)

(
ρ(x + σ, t)

1 − η(x + σ/2, t)
− ρ(x − σ, t)

1 − η(x − σ/2, t)

)]

+
∂

∂x

[
ρ(x, t)

dVext (x)

dx

]
(7)

where we have chosen the energy units such that T = 1.
The first term in (7) represents the diffusion equation for the ideal-gas case; the second

term is the correction due to the hard-rod interaction. It is worthwhile to point out that

ρ(x)ρ(x + σ)/(1 − η(x + σ/2))

is just the two-point equilibrium correlation function ρ
(2)
0 (x, x ′) evaluated at contact, i.e. when

x ′ = x + σ , so this term takes into account the collisions of the rod at x with the remaining
particles on the right-hand side. Similarly the other term describes the interactions with the
left-hand sector.

To check the accuracy of the method, we compared the direct simulation of the Langevin
equation (1) with the results obtained by solving numerically the equation of evolution for the
density (5) using the following tests [2]:

• The free expansion from a dense state. We considered a system of N hard rods initially
nearly at contact and studied the evolution of the density profile. We observe that the
system evolves from an initially highly packed state characterized by a peaked structure.
As the time elapses the peaks become less pronounced and finally one observes a single
bump. The agreement between the Langevin simulations and equation is good [2]. The
main difference between the two simulations is given by the damping rate at which the
oscillations disappear.

• The collapse to a dense equilibrium state. We have studied the evolution of a few particles
collapsing in a parabolic potential well. Initially their centres of mass are apart. During an
intermediate stage they diffuse nearly independently under the action of the field directed
towards the bottom of the well; finally they start experiencing mutual repulsion. The
results from the dynamic density functional and from the direct Langevin simulation with
2000 particles are in good agreement, although some differences can be seen in the initial
stage and in the final profiles. These differences are due to the use of the grand canonical
functional instead of the true canonical functional.
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• The relaxation through highly correlated states. In this numerical experiment we have
considered hard rods in a one-dimensional periodic potential. Initially the particles are
located in alternate wells and then they start to diffuse. If the distance between consecutive
wells is made smaller than the hard-rod diameter, the relaxation time becomes longer, in
view of the fact that some configurations are unlikely. The time evolution of the density
profiles showed different times, for both the DDF equation and the average of the Langevin
simulations over 2000 realizations of the noise. In both cases the relaxation is slow, and it
becomes much slower for increasing values of the potential barrier. The comparison of the
result clearly shows that the DDF equation, with the exact Percus free energy, approaches
the equilibrium state faster than the average of the Langevin simulation. This difference is
related again to the use of different statistical ensembles: the canonical Langevin equation
keeps N constant while the grand canonical F [ρ] allows for fluctuations in the number
of particles, keeping only the average fixed. The changes in N in the DDF open a new
relaxation path and give a faster relaxation, even if the final equilibrium density profiles
in the canonical and the grand canonical ensembles are very similar.

In the past, different prescriptions for the evolution of the density towards equilibrium
have been proposed [8, 12]. The most popular is the one employed by several groups and is
tantamount to performing a density expansion of the excess free-energy functional about some
uniform reference state and retaining only the quadratic terms. In order to favour jumps over
the metastability barriers, one adds small random perturbations to the values of the fields in
the numerical integration. The resulting theory has been proposed in order to explain glassy
behaviour in hard-sphere mixtures, but the origin of the noise remains somewhat obscure.
Kawasaki [8] in a series of interesting papers suggested that an averaging procedure different
from ours could lead to a stochastic equation for the density. Such an equation should be
derived by considering a coarse graining of the density over length scales larger than the
microscopic lengths of the problem. However, we believe that the coarse-graining procedure,
although physically motivated, cannot be rendered explicit. Moreover, when we compared our
method with the truncated density expansion we found that the latter showed, in the case of
the periodic potential, a surprisingly fast relaxation towards the minima. Perhaps the effect of
this approximation is to underestimate the packing effects.

To summarize, we have introduced a dynamic density functional approach to describe
the Brownian motion of a system of colloidal particles which might be relevant in the field of
phase separation and domain growth. The equilibrium DF is used to achieve the closure of the
equations. Our study shows that the DF approach is consistent with the microscopic particle
dynamics. The equations contain a density-dependent mobility but no noise term.
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